Driver Exposure to Particulate Matter:
Field Study, Data Analysis and
Modelling

Birgit Krausse
Driver Exposure to Particulate Matter:
Field Study, Data Analysis and Modelling

Birgit Krausse

A thesis submitted in partial fulfilment of the
requirements of the De Montfort University for the
degree of Doctor of Philosophy

July, 2004

Institute of Energy and Sustainable Development
De Montfort University Leicester
I dedicate this thesis to the memory of my father who encouraged me to seek new challenges and always believed that I would achieve my goals.

Gesell dich einem Bessern zu,
dass mit ihm deine besser' n Kräfte ringen.
Wer selbst nicht weiter ist als du,
der kann dich auch nicht weiterbringen.

FRIEDRICH RÜCKERT (1788 - 1866)
Abstract

An empirical study investigating human exposure to particulate matter in a transport microenvironment is described in this thesis. The focus of the investigation is the exposure of car drivers to ultrafine particles on urban roads. In-vehicle exposure to larger particles (PM\textsubscript{10}, PM\textsubscript{2.5}) is also explored.

The field study methodology, developed particularly for this project and applied during a twelve month field campaign, is outlined in some detail. The data processing methods and the structure of the field study database are described.

Findings from the analysis of high-frequency time series data are presented. Results indicate there are significant differences between ultrafine particles and particles of the larger size ranges (PM\textsubscript{10}, PM\textsubscript{2.5}) in terms of their short-term variability and sensitivity to external parameters (i.e. meteorological conditions and traffic events). Further analysis reveals significant differences in seasonal and diurnal variability of average exposure values for the investigated particle size ranges. Novel visualisation techniques are described which aid the detection of significant patterns in large volumes of time series data.

The methods and findings regarding the analysis of the main determinants of driver exposure by multiple linear regression analysis are described. Exposure levels are shown to be strongly affected by particular road layouts and meteorological conditions. Different determinants are identified for ultrafine particles than for the other two size ranges.

Three scenarios are presented which aim to utilize field data in conjunction with the findings regarding the main determinants to estimate exposure on future journeys. Results show that strong over- or underestimation of exposure levels occurs in some cases, indicating that alternative modelling methods may be more suitable.

Finally, a method for modelling average annual driver exposure is proposed. Methods and implications are discussed. The results indicate that the method may produce useful results but validation with additional data is required.
Acknowledgements

I would like to express my gratitude to the De Montfort University Leicester, and particularly to the Institute of Energy and Sustainable Development (IESD), who provided me with the opportunity and funding to carry out this research. I also gratefully acknowledge the contribution of data by the Pollution Control Group of Leicester City Council and the equipment funding provided by the EPSRC.

Special thanks are due to my supervisor John Mardaljevic for his advice and guidance throughout the project, and my colleague and friend Kevin Turpin, with whom I shared the long days of the field campaign. I would also like to thank the staff at the IESD for their continuous support and assistance.

I am especially grateful for the encouragement given to me by my family over the years. Without their patience and support I would not have been in a position to carry out this research.

Finally, I thank Brian for always being there for me and for providing excellent advice and software support.

I declare that the content of the submission represents solely my own work.

Birgit Krausse, July 2004.
Contents

Chapter 1. **Introduction**

Chapter 2. **Particulate Matter and Personal Exposure: Legislation and Scientific Background**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Policy and legislation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1</td>
<td>The National Air Quality Strategy and current standards</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Local air quality management</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Particulate matter</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Origins, physical parameters and composition</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Measurement of particulate matter</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Health effects</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Personal exposure</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Definition</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Personal exposure vs. ambient, indoor and outdoor concentrations</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Transport exposure studies</td>
<td>27</td>
</tr>
</tbody>
</table>

Chapter 3. **Field Campaign: Data Collection and Processing**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Field study</td>
<td>31</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Requirements</td>
<td>32</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Instrumentation</td>
<td>34</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Location</td>
<td>37</td>
</tr>
<tr>
<td>3.1.4</td>
<td>General methods</td>
<td>42</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Data collection</td>
<td>44</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Data screening and quality control</td>
<td>45</td>
</tr>
<tr>
<td>3.1.7</td>
<td>The field data set</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Programming for data processing and analysis</td>
<td>48</td>
</tr>
</tbody>
</table>
Chapter 4. Overview and General Data Analysis 64

4.1 Introduction .. 65
4.2 General statistics .. 66
4.2.1 Seasonal and diurnal variability .. 69
4.2.2 Between route variability .. 71
4.2.3 Summary .. 73
4.3 Temporal dynamics of driver exposure .. 74
4.3.1 Characteristics of time series data .. 75
4.3.2 Novel plotting technique .. 77
4.3.3 Plotting individual runs .. 77
4.3.4 Synoptic plots for multiple runs ... 81
4.3.5 Summary .. 86
4.4 Time-lag analysis .. 86
4.5 Correlation analysis ... 90
4.6 Stacked histograms... 94
4.6.1 Methods .. 95
4.6.2 Results ... 95
4.6.3 Summary .. 98
4.7 Influence of peak values on exposure ... 99
4.7.1 Setting the threshold ... 100
4.7.2 Data preparation and calculations ... 103
4.7.3 Results .. 104
4.7.4 Discussion ... 105
4.8 Summary .. 107

Chapter 5. Identifying the Main Determinants 109

5.1 Introduction ... 109
5.2 Theoretical background of multiple regression analysis 111
5.2.1 X and Y variables ... 112
5.2.2 Assessing the validity of a regression model ... 113
5.2.3 Assessing the accuracy of the regression coefficients 114
5.2.4 Backward elimination .. 114
5.3 Methods and data used .. 115
5.3.1 Dependent variables ... 116
5.3.2 Independent variables ... 117
5.3.3 Multiple regression analysis .. 121
5.4 Results - Ultrafine particles ... 122
5.4.1 Results for ungrouped data .. 122
5.4.2 Results for grouped data ... 127
5.5 Results - PM$_{10}$ and PM$_{2.5}$.. 129
5.6 Summary ... 132
Chapter 6. Predictive Modelling

6.1 Journey exposure modelling ... 134
6.1.1 Objectives and models ... 135
6.1.2 Methods ... 137
6.1.3 Evaluation of model performance - Theory 138
6.1.4 Final models .. 141
6.1.5 Discussion ... 151
6.2 Annual exposure modelling ... 153
6.2.1 Objectives ... 153
6.2.2 Methods ... 154
6.2.3 Results and discussion ... 158
6.2.4 Conclusions .. 161
6.3 Summary ... 162

Chapter 7. Discussion and Conclusions

7.1 Summary ... 164
7.2 Conclusions ... 165
7.3 Suggestions for further work ... 167

Bibliography

Glossary

Appendix A. Auxiliary Material for Chapter 3

A.1 Calibration of speed sensor ... 179
A.2 Detailed route maps .. 180

Appendix B. Auxiliary Material for Chapter 4

B.1 Descriptive statistics for road links .. 183
B.2 Cross-correlation function for time-lag analysis 184
B.3 Modifying time series data for the correlation analysis 185
B.4 Stacked histogram plots for all routes ... 187
Appendix C. Auxiliary Material for Chapter 5

C.1 Further details regarding the statistical methods ... 189
C.1.1 Near-extreme multicollinearity ... 189
C.1.2 Least squares method .. 190
C.1.3 Assessing normality and homoskedasticity .. 190
C.1.4 Assessing the accuracy of the regression coefficients ... 191
C.2 Considerations for the conversion of the circular variable ‘wind direction’ 193
C.3 Scatterplots and correlation matrices (ultrafine particles) ... 196
C.4 Tables for stepwise multiple regression (ultrafine particles) ... 201

Appendix D. Auxiliary Material for Chapter 6

D.1 Interpolation of missing values in the field study matrix .. 205
Figures

Chapter 1. Introduction

Chapter 2. Particulate Matter and Personal Exposure: Legislation and Scientific Background

Figure 2-1 Number, surface and mass distributions of urban air particles (From Weijers et al., 2001) ... 10
Figure 2-2 Particulate matter size distribution collected in urban traffic flow showing formation mechanisms for particle modes (Re-drawn from Wilson et al., 1997) 12
Figure 2-3 Modern emissions matrix for gasoline vehicles (vehicle class: passenger car, i.e. ECE 1503 <1.4 l) ... 16
Figure 2-4 The respiratory system (From Weijers et al., 2001) .. 20

Chapter 3. Field Campaign: Data Collection and Processing

Figure 3-1 Field study routes ... 39
Figure 3-2 Number of data collection runs carried out per month 48
Figure 3-3 Simplified schematic of field data processing procedures 53
Figure 3-4 Extract from index file ... 54
Figure 3-5 Example of event data record .. 55
Figure 3-6 IDL routines for data analysis methods used in 'Overview and General Data Analysis' (Chapter 4) ... 57
Figure 3-7 IDL routines for data analysis methods used in 'Identifying the Main Determinants' (Chapter 5) and 'Predictive Modelling' (Chapter 6) 58
Figure 3-8 'IDL Toolbox' utility functions for use in other routines 59
Figure 3-9 Main IDL data array ... 61

Chapter 4. Overview and General Data Analysis

Figure 4-1 Minimum and maximum geometric mean values for particle concentrations on the field study routes, separated into clockwise and anti-clockwise links 72
Figure 4-2 Example time series of concentrations of ultrafine particles, PM$_{2.5}$ and PM$_{10}$, showing raw data (black) and Fourier smoothed data lines (red)........................ 76
Figure 4-3 Example plot showing particle and speed data strips for data collected during one completion of Route 1, AM, anti-clockwise, logging interval: 1 second .. 78
Figure 4-4 Instantaneous speed - synoptic plot for time series data from multiple journeys. 82
Figure 4-5 Ultrafine particle number concentration - synoptic plot for time series data from multiple journeys .. 84
Figure 4-6 PM$_{2.5}$ mass concentration - synoptic plot for time series data from multiple journeys.. 85
Figure 4-7 Cross-correlation matrices for speed vs. ultrafine particle concentrations for Routes 1 to 3, using time series data logged at intervals of 1 second (a-c) and averaged over 20 seconds (d-f) .. 88
Figure 4-8 Time series plots showing the effect of changes in averaging interval and smoothing settings.. 92
Figure 4-9 Correlation between ultrafine and PM$_{2.5}$ particles, example plots illustrating the reasons for variability in r^2 .. 94
Figure 4-10 Stacked histograms for data runs carried out on Routes 1 and 2 during evening rush hour... 96
Figure 4-11 Histograms for grouped data: ultrafine particle concentrations measured on field study routes ... 98
Figure 4-12 Hypothesised pollution scenario .. 99
Figure 4-13 Example of two time series plots showing contribution of peak values to overall exposure (journey 1 blue, journey 2 red).. 102
Figure 4-14 Scatterplot for BS threshold vs. FRAC ($r^2 = 0.27$, significant at $p < 0.0001$) 105

Chapter 5. Identifying the Main Determinants

Figure 5-1 Wind rose showing wind speed and direction in Leicester during all valid field study runs.. 119
Figure 5-2 Venn diagram illustrating the similarities between results for ultrafine particles, PM$_{2.5}$ and PM$_{10}$.. 132

Chapter 6. Predictive Modelling

Figure 6-1 Scenarios for link and journey exposure modelling ... 136
Figure 6-2 Observed average link exposure values vs. relative deviation for results from the AC$_{_T}$ and AC$_{_M}$ models (example for one model iteration, $N = 163$).............. 148
Figure 6-3 Journey exposure, observed vs. predicted values for the four scenarios (ATE, ATEK, AC$_{_T}$ and AC$_{_M}$) ... 151
Figure 6-4 Temperature vs. wind speed matrices illustrating the steps required to generate the annual exposure matrix form field study and reference data....... 156
Figure 6-5 Comparison of estimated annual exposure levels with measured annual averages and air quality standards (* objectives for average annual concentration).. 161

Chapter 7. Discussion and Conclusions
Bibliography

Glossary

Appendix A. Auxiliary Material for Chapter 3

Figure A-1 Speed calibration function from dynamometer test .. 179
Figure A-2 Route 1 - Uppingham Road .. 180
Figure A-3 Route 2 - Abbey Lane .. 180
Figure A-4 Route 3 (City Centre) showing traffic flow directions and traffic lights.............. 181

Appendix B. Auxiliary Material for Chapter 4

Figure B-1 Coefficients of correlation between size ranges for various Fourier cut-off values and averaging intervals .. 186
Figure B-2 Stacked histograms for Route 1 - Uppingham Road .. 187
Figure B-3 Stacked histograms for Route 2 - Abbey Lane .. 188
Figure B-4 Stacked histograms for Route 3 - City Centre... 188

Appendix C. Auxiliary Material for Chapter 5

Figure C-1 Wind rose and histogram for wind direction variable ... 194
Figure C-2 Scatterplot for wind speed vs. converted wind direction for the most frequently measured angle (left) and correlation coefficients for wind speed vs. converted wind direction for all angles ... 195
Figure C-3 Scatterplots for the link specific independent variables .. 197
Figure C-4 Scatterplots for the independent variables based on meteorological parameters.. 198
Figure C-5 Scatterplots for the dependent variable ate and the independent variables before backward elimination (excluding categorical variables with more than two categories) ... 199
Figure C-6 Scatterplots for the dependent variable ate[k and the independent variables before backward elimination (excluding categorical variables with more than two categories) .. 199
Figure C-7 Scatterplots for the dependent variable ac and the independent variables before backward elimination (excluding categorical variables with more than two categories) .. 200

Appendix D. Auxiliary Material for Chapter 6

Figure D-1 Matrices of field study data before and after interpolation 206
Table 2-1 Terminology for the most commonly used particle size ranges............................ 11
Table 2-2 Personal exposure studies which investigated in-vehicle exposure to particulate matter .. 28

Chapter 3. Field Campaign: Data Collection and Processing

Table 3-1 Main parameters for the road links of the data collection routes. (For details on the classification categories used refer to Table 3-2.)... 41
Table 3-2 Road specific parameters and categories used to classify the field study road links ... 42
Table 3-3 Data collection runs carried out during the field study, grouped by location, direction of travel, season and time of day ... 47
Table 3-4 Programmable software used to develop specialized software tools 50

Chapter 4. Overview and General Data Analysis

Table 4-1 Categories for the selection of sub-sets of field data... 66
Table 4-2 Field study data set showing number of runs, GM(GSD) for all runs grouped by location, direction of travel, season and time of day (GM - geometric mean, GSD - geometric standard deviation, cw - clockwise, acw - anti-clockwise) 68
Table 4-3 Mean r^2 and standard deviation for correlation between particle size ranges (all r^2 significant at $p < 0.001$) ... 90
Table 4-4 Mean r^2, standard deviation and modification settings for the strongest detected average correlation based on modified time series data for three particle size ranges (all r^2 significant at $p < 0.001$) ... 93
Table 4-5 Numerical comparison of exposure composition for two time series 102
Table 4-6 Descriptive statistics for journey exposure composition ($N = 307$) 104
Chapter 5. Identifying the Main Determinants

Table 5-1 Independent variables considered as potential determinants in multiple linear regression model ... 118
Table 5-2 Results of multiple linear regression with backward elimination ... 123
Table 5-3 Results for the multiple regression analyses using sub-sets of data, showing multiple correlation coefficients and main predictor variables for the final models after backward elimination .. 128
Table 5-4 Multiple linear regression results for three particle size ranges, showing multiple correlation coefficient R² and R²* (ratio of the between groups sum of squares to the total sum of squares) for variables included in 'best models' ... 130

Chapter 6. Predictive Modelling

Table 6-1 Summary statistics for evaluation of intermediate models .. 142
Table 6-2 Summary statistics for evaluation of link exposure estimates ... 147
Table 6-3 Summary statistics for comparison of journey exposure predictions 150
Table 6-4 Comparison of modelled and measured exposure parameters for ultrafine particles (UF), PM₂.₅ and PM₁₀ .. 159

Chapter 7. Discussion and Conclusions

Bibliography

Glossary

Appendix A. Auxiliary Material for Chapter 3

Appendix B. Auxiliary Material for Chapter 4

Table B-1 Geometric mean and standard deviation for all concentration data measured on the individual links ... 183

Appendix C. Auxiliary Material for Chapter 5

Table C-1 Correlation matrix for the link specific independent variables .. 196
Table C-2 Correlation matrix for the independent variables based on meteorological parameters .. 196
Table C-3 Correlation coefficients r for the correlation between the dependent variables and the independent variables for the scatterplots shown in Figures C-5 - C-7 .. 200
Table C-4 Results for steps of backward elimination analysis for un-grouped ultrafine particle concentration data ... 201
Table C-5 Results for steps of backward elimination analysis for grouped ultrafine particle concentration data - ATE model ... 202
Table C-6 Results for steps of backward elimination analysis for grouped ultrafine particle concentration data - ATEK model ... 203
Table C-7 Results for steps of backward elimination analysis for grouped ultrafine particle concentration data - AC model ... 204

Appendix D. Auxiliary Material for Chapter 6